Use of Early Indicators to Predict Success on COMLEX
Findings from Three COMs

Midwestern University Chicago COM
Rita Getz, Ph.D.
Sandy Frait, M.Ed.

Philadelphia COM
Robert Cuzzolino, Ed.D.
Kerin Fresa-Dillon, Ph.D.

KCUMB COM
Alan Glaros, PhD
Linda Adkison, Ph.D.
Midwestern University
Chicago College of Osteopathic Medicine

Rita Getz, PhD
Associate Dean of Academic Affairs

Sandy Frait, MEd
Education Specialist
Classes of 2011–2014
COMLEX Level 1/GPA OMS1

$r = 0.683$
Classes of 2011–2014
COMLEX Level 1/GPA OMS2

$r = 0.746$
OMS1 Curriculum

- Histology
- Gross Anatomy/Embryology
- Neuroanatomy
- Physiology
- Introduction to Clinical Medicine
- Biochemistry
- Behavioral Medicine
- Osteopathic Manipulative Medicine
OMS1 Course Grades and L1 Means

<table>
<thead>
<tr>
<th>OMS1 Course</th>
<th>A/A-</th>
<th>B+/B/B-</th>
<th>C+/C</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histology</td>
<td>578 (72)</td>
<td>507 (69)</td>
<td>463 (63)</td>
<td>416 (50)</td>
</tr>
<tr>
<td>Gross/Embryo</td>
<td>600 (70)</td>
<td>534 (70)</td>
<td>474 (66)</td>
<td>428 (55)</td>
</tr>
<tr>
<td>Neuroanatomy</td>
<td>582 (73)</td>
<td>516 (68)</td>
<td>453 (53)</td>
<td>423 (85)</td>
</tr>
<tr>
<td>Physiology</td>
<td>590 (70)</td>
<td>517 (66)</td>
<td>453 (58)</td>
<td>416 (41)</td>
</tr>
<tr>
<td>Intro to Clinical Medicine</td>
<td>550 (80)</td>
<td>502 (74)</td>
<td>455 (62)</td>
<td>451 (54)</td>
</tr>
</tbody>
</table>
OMS2 Curriculum

- Topics in Medicine
- Infectious Diseases and their Etiologic Agents
- Pathology
- Pharmacology
- Immunology
- Psychiatry
- Osteopathic Manipulative Medicine
OMS2 Course Grades and L1 Means

<table>
<thead>
<tr>
<th>OMS2 Course</th>
<th>Classes of 2007-2014 Mean COMLEX L1 scores (1SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A/A-</td>
</tr>
<tr>
<td>Topics in Medicine</td>
<td>588 (77)</td>
</tr>
<tr>
<td>Infectious Diseases and their Etiologic Agents</td>
<td>585 (71)</td>
</tr>
<tr>
<td>Pathology</td>
<td>555 (74)</td>
</tr>
<tr>
<td>Pharmacology</td>
<td>582 (67)</td>
</tr>
</tbody>
</table>

*N too small to calculate
OMS2 Course Grades and L1 Means

Board scores based on course grade OMSII

Course Title

COMLEX L1
The Intangible Factor

- Faculty outreach via Academic Watch/Warning
- Academic Watch = <75% in one or two courses, encouraged to meet with faculty
- Academic Warning = <75% in ≥ three courses OR <70% in ≥ one course(s), required to meet with faculty or ADAA, follow-up peer tutoring or mtgs with campus counselors as indicated
Student non-responsiveness to faculty outreach

<table>
<thead>
<tr>
<th>Academic Warning</th>
<th>Responders</th>
<th>Non-responders</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty Outreach</td>
<td>59%</td>
<td>41%</td>
<td>100%</td>
</tr>
<tr>
<td>Failed L1</td>
<td>20%</td>
<td>53%</td>
<td>33%</td>
</tr>
</tbody>
</table>
Conclusions

- Course performance as measured by OMS1 and OMS2 GPA shows 0.683 and 0.746 correlation to COMLEX Level 1 performance
- It is the effort in all courses rather than effort in a single course that impacts the L1 score
- The academically struggling student who does not respond to faculty assistance and guidance may be at a greater risk of failing COMLEX L1
Philadelphia College of Osteopathic Medicine

Robert Cuzzolino, Ed.D.
Vice President for Graduate Programs and Planning

Kerin Fresa-Dillon, Ph.D.
Professor, Chair-Curriculum Committee
Purpose

1. to identify the characteristics that differentiate the academic performance of those who pass vs. those who fail COMLEX I on the first attempt.
2. to create a profile of risk factors for failing COMLEX I
3. to inform the development of an early identification system and remedial program
GPA as Predictor of Test Performance
Single biggest predictor of COMLEX 1 performance

The strongest univariate indicator of Comlex I performance is performance in the PCOM M1-M2 curriculum, reported as GPA or class rank -------- $r = .741$

• However, is there another active, predictive way to look at the progression of a student through pre-med and preclinical education on the path to COMLEX I?
Methods

• Archival records of students were examined related to demographic and academic variables including:
 – undergraduate college grade point average
 – undergraduate science grade point average
 – MCAT-Verbal
 – MCAT-Physical
 – MCAT-Biology
 – MCAT-total scores
Methods

• Registrar’s files provided data on preclinical performance at PCOM (M-1 and M2)

• We reviewed individual student achievement (0-100 point scale) on major course blocks in M-1 and M2 and overall GPA and class rank.
Methods

• Students who failed COMLEX on the first attempt were compared on a variety of variables to students who passed COMLEX on the first attempt

• A randomly selected sample of cohort mates who passed COMLEX were identified

• All data obtained from the Registrar were downloaded from Excel into SPSS 15.0
Methods

• Multivariate analyses were conducted to compare “passes” versus “fail” on specific variables
• Multivariate analyses revealed that these two groups differed overall
• A series of one way ANOVA’s were then conducted on each of the dependent variables to determine where the differences were
Risk factors for COMLEX 1 first time failure

• We then defined each significant variable as a “risk factor” and examined the accumulation of risk factors for relationship to pass or fail on Comlex 1 first-sitting.
Significant “Distal” Variables (before matriculation)

- Maximum MCAT- Physical: 7 or below (failing group mean=7.2)
- Maximum MCAT Biological: 7 or below (failing group mean=7.4)
- GPA Science: 3.1 or below
- Maximum MCAT Total: 22 or below (failing group mean= 22.2)
Significant “Proximal” Variables (after matriculation)

- PCOM Preclinical GPA (79 or below)
- PCOM Class Rank (Quintile = 4.5 or above)
- SPOM Final Grade: 77 or below (failing group mean = 77.7)
- Cell and Tissue Final Grade: 73 or below (failing group mean = 73.2)
- Clinical & Basic Neuroscience Final Grade: 80 or below (failing group mean = 80.1)
Correlation between number of risks and probability of passing

• $r = -0.95.$ $P < 0.001$\quad R squared = 0.9025

• As the number of risk factors increases, the probability of passing decreases.

Conclusion: 90.25% of the differences in probability of passing are attributable to differences in the number of risk factors; the other 9.75% of the variability is attributable to other yet unknown factors.
2010 DO M2 Comprehensive Exam

- 197 content questions corresponding to m1-m2 curricular areas (non-clinical) through Clinical and Basic Neuroscience (term 2).
- 3 screening questions dealing with prep time, timeframe for taking Comlex I, and perception of the helpfulness of the Comprehensive Exam
- **Mandatory** for all M-2 students to sit for exam
- Administered on April 23, 2010.
- Proctors noted those who left in the first hour.
Breakdown

- 264 students sat for the Comp
- Overall mean = 104 out of 197 (53% correct)
- When the group was reduced by eliminating those who left in the first hour (37), the group totaled 227 valid comprehensive scores for analysis
- A small group of students did not sit for Comlex 1 by the time of analysis and reduced the sample further.
What is the relationship between the Comprehensive Exam and COMLEX I scores?

- Pearson Correlational Analysis of all students reveals \(r = +.469 \)
- Coefficient of Determination = .22 meaning that 22% of the variability in COMLEX scores is attributable to Comp Scores; the remaining 78% of the variability is unaccounted for.
Students with something more important to do

• Students who left in the first hour had a mean comprehensive exam score of 49.7 (25%) comparative to the total group which had a mean score of 104 (53%)

• 6 of these students (16%) failed the COMLEX with a mean score of 348.

• 3 of these students did not take COMLEX.
What happens to the relationship when we remove students who left the exam before 1 hour?

Note:
This would mean that if a student left the exam at around one hour they would theoretically have spent 18 seconds per item.

- Pearson Correlational Analysis for only those students who took exam more seriously = +.674
- Coefficient of Determination = meaning that 45% of the variability in COMLEX scores is attributable to Comp Scores; the remaining 55% of the variability is unaccounted for.
COMLEX I score distribution by Comprehensive exam score
Can we predict COMLEX scores from COMP scores?

- In a simple regression analysis with Comp scores as the predictor variable and COMLEX score as the criterion:
 - The regression equation makes a significant prediction beyond chance that Comp scores can significantly predict COMLEX scores.
 - The formula:
 \[\text{COMLEX Score} = 2.297 \times \text{(COMP score)} + 237.763 \]
Cross-validation

• Data from PCOM Classes of 2013 and 2014
 – Comprehensive exam administered in April, 2011 and April, 2012, respectively

• Class of 2013 (analysis limited to students who spent greater than an hour on the examination)
 – Mean score: 118 (59.9%)
 – Pearson Correlational Analysis (comprehensive exam score and COMLEX 1 score) = +.658
Cross-validation

• Class of 2014 (analysis limited to students who spent greater than an hour on the examination)
 – Mean score: 109 (55.3%)
 – Pearson Correlational Analysis (comprehensive exam score and COMLEX 1 score) = +.505
KCUMB-COM Use of PCOM Cumulative Exam

- 110 student volunteers
- Exam given May 25, 2012
- Mean score: 65.48
- Pearson’s Correlation: $R=0.793$
- Coefficient of Determination: 63%

Sample size: 110
Mean x (\bar{x}): 65.483
Mean y (\bar{y}): 518.79090909091
Intercept (a): -5.6412563777521
Slope (b): 8.0086765338891
Regression line equation: $y=8.0086765338891x-5.6412563777521$
Administration of comprehensive examination in 2013 (Class of 2015)

• Administered earlier (end of February vs. end of April)

• Used as a formative assessment to guide student study

• Will be correlated to:
 – COMSAE score (end of April, 2013)
 – COMLEX I score
KCUMB
College of Osteopathic Medicine

Alan G. Glaros, Ph.D.
Associate Dean for Basic Medical Sciences
Linda R. Adkison, Ph.D.
Associate Dean for Curricular Affairs
Goal

- Admissions metrics select students who are well-prepared and academically competitive.
- Despite homogeneity in skills and capabilities, there is considerable variability in their performance in medical school.
 - Reflected in grades and board scores.
Questions

- Can we predict who is at risk for poor board performance?
- How soon can we predict?
- How well can we predict?
KCUMB Curriculum Design

- Series of 11 courses, also called sections, that have a significant physical systems focus
- Sections offered sequentially, not concurrently
KCUMB Performance Evaluation

- Typically, one midterm and one final per section
- For our report today, “grade” means total percentage of exam items answered correctly
 - Final grade for section also includes small number of other elements
Distribution of Scores

Mean = 81.72
Std. Dev. = 6.068
N = 240
Performance as Rank

- Measure performance in a section as a rank
 - Performance rated from best to worst, based on exam performance
Spearman Correlation of Ranks Between Adjacent Sections
Another View of Stability

Mean = -0.2317
Std. Dev. = 45.2344
N = 246
Conclusion 1

- A student’s relative performance in our curriculum doesn’t change over time
Question 2

- Do grades predict board performance?
- Use exam score in section as predictor of COMLEX I score
 - Linear regression approach
How Well Do Grades Predict Board Performance?

- R-value of section exams as predictors of COMLEX I
Exam grades are good predictors of COMLEX I performance in our curriculum
For CO2013, exam performance in renal section was best predictor of COMLEX I scores

- Renal section is at end of year 1
- COMLEX I taken one year later

One year in advance, we could predict, with reasonable accuracy, scores on COMLEX I
For CO2013 and CO2014, both exam grades and COMLEX I scores were available.

To identify students at risk, we need prediction metrics *before* students are released to take COMLEX.
Can Predictive Model From One Year Be Applied To The Next?

- Obtain the best-predicting regression equation for CO2013
- Apply the equation to CO2014 data to generate predicted COMLEX I score
- Determine difference between predicted and actual score
Results

Mean = 3.19
Std. Dev. = 59.364
N = 236
Conclusion 3

- It is possible to develop models from one class’ COMLEX performance to predict the next class’ COMLEX performance
 - Prediction of mean performance is very good
 - High level of variability
Implications and Follow-Up Questions

- Students at risk for poor performance on COMLEX I can be identified in their first year
 - Applies only to our curriculum and our students and may not generalize to other institutions
- Can interventions be designed to reduce that risk?
Questions?